
USING THE
CORE AUTONOMOUS SAFETY SOFTWARE (CASS)

AND THE
CASS HAZARD EVALUATION READINESS REVIEW ANALYSIS

(CHERRY) TOOL

Capacity – Agility – Responsiveness – Resilience

AFTS OVERVIEW

An Autonomous Flight Termination System (AFTS)
is an on-board unit that monitors the flight vehicle

by comparing sensor inputs to pre-defined Range Safety
criteria. If the flight vehicle violates safety criteria,

the AFTS issues a flight termination command.

2

• Faster response time allows larger safe fly zones.
• Reduced launch costs due to less dependence on Range

infrastructure and instrumentation.
• Increased launch availability.
• 24/7 launch with no Range support.
• Launch in remote locations – off Range.

AFTS Advantages

Capacity – Agility – Responsiveness – Resilience

TOPICS

3

• Core Autonomous Safety Software (CASS)
• Mission Rules Development
• Testing and Simulation (CHERRY Tool)
• AFTS Unit
• Getting the Software

Capacity – Agility – Responsiveness – Resilience

CASS

• CASS is composed of:
– Flight Software
– Utilities Software
– Documentation

• CASS is GFE
– Core software for an AFTS.
– Used like any third-party software product approved for use

in a Safety Critical system.
• CASS Requires

– Safety criteria; Mission Data Load (MDL).
– Sensor data; 2 or more adequate and independent sources

of vehicle performance data at a regular, periodic rate.
– Wrapper software; bridges gap between hardware sensors

and CASS, and between CASS and flight termination system.

4

Capacity – Agility – Responsiveness – Resilience

CASS

5

CASS Update Cycle

Capacity – Agility – Responsiveness – Resilience

MISSION RULES DEVELOPMENT

• Mission Rules defined in XML text file
– Format defined by Range Safety Operations Markup Language

(rsoML) schema definition.
– Mission Rules file is composed of 11 Major sections.

Section Description

Mission Contains descriptive data for mission.

UserDefines User defined variables and named constants.

Settings Global parameter settings and constants.

Commands Commands to Activate or deactivate the FTS.

Sensors Sensor definitions and parameters.

AtmosphericRegions Define region to include atmospheric computations.

FlightEvents Important flight events like ignition, liftoff, and staging.

ReferenceFrames User defined moving reference frames.

Boundaries User defined boundary definitions.

Tables User defined lookup tables.

MissionRules Rules for Safing the flight and Terminating the flight.

6

Capacity – Agility – Responsiveness – Resilience

MISSION RULES DEVELOPMENT

Sensors Sample

7

<Sensors>
 <Sensor id="GPS_A">
 <Filter>
 <Limit_Filter>
 <Minimum_Time> @GPST 2141 216000.0 </Minimum_Time>
 <Minimum_Position> DistanceFromCenterMassEarthToDeadSea </Minimum_Position>
 <Maximum_Position> DistanceFromCenterMassEarthToLowEarthOrbit </Maximum_Position>
 <Maximum_Velocity> VelocityToGoOrbital </Maximum_Velocity>
 </Limit_Filter>
 </Filter>
 <liftOffThreshVel> Velocity_Threshold_GPS </liftOffThreshVel> <!-- In meters/second. -->
 <velDotParam> Acceleration_Filter_Coefficient </velDotParam> <!-- Unitless. -->
 <QualifyLogic default="false">
 <cond> GPS_A.isValidNavData is true </cond> <and/>
 <cond> GPS_A.isValidGPSData is true </cond> <and/>
 <cond> GPS_A.svCount > Minimum_Satellite_Count </cond> <and/>
 <cond> GPS_A.PDOP < Maximum_PDOP </cond> <and/>
 <cond> GPS_A.Time < System_Time </cond>
 </QualifyLogic>
 </Sensor>
 
 
 
</Sensors>

Capacity – Agility – Responsiveness – Resilience

MISSION RULES DEVELOPMENT

FlightEvents Rules Sample: Stage Ignition

8

<FlightEvents>
 <Rules>
 <GenericRule id="Stage_Ignition">
 <Compute>
 <Assign id="Ignition_Acceleration_Threshold"> Ignition_Acceleration_Threshold_Table(Stage_Number) </Assign>
 </Compute>
 <Subset> GPS_A GPS_B HYBRID_A HYBRID_B INS_A INS_B </Subset>
 <Output>
 <InvalidWhen default="true">
 <cond> isGoodSensorData is false </cond> <or/>
 <cond> haveLiftOff is false </cond>
 </InvalidWhen>
 <Result default="false">
 <cond> accelTotal > Ignition_Acceleration_Threshold </cond>
 </Result>
 </Output>
 </GenericRule>
 
 
 
 </Rules>
</FlightEvents>

Capacity – Agility – Responsiveness – Resilience

MISSION RULES DEVELOPMENT

FlightEvents Rules Sample: Liftoff

9

<FlightEvents>
 <Rules>
 <GenericRule id="Liftoff_Hardware_Only">
 <Output>
 <InvalidWhen default="true">
 <cond> haveLiftOff is true </cond> <or/>
 <cond> GPS_A.isGoodSensorData is true </cond> <or/>
 <cond> GPS_B.isGoodSensorData is true </cond> <or/>
 <cond> HYBRID_A.isGoodSensorData is true </cond> <or/>
 <cond> HYBRID_B.isGoodSensorData is true </cond> <or/>
 <cond> INS_A.isGoodSensorData is true </cond> <or/>
 <cond> INS_B.isGoodSensorData is true </cond>
 </InvalidWhen>
 <Result default="false">
 <cond> haveLiftOffA is true </cond> <and/>
 <cond> haveLiftOffB is true </cond>
 </Result>
 </Output>
 </GenericRule>
 
 
 
 </Rules>
</FlightEvents>

Capacity – Agility – Responsiveness – Resilience

MISSION RULES DEVELOPMENT

FlightEvents Stages Sample: Stage

10

<FlightEvents>
 <Stages>
 <Stage id="Stage_1">
 <!--
 Detect Stage 1 ignition (liftoff) if we have two hardware indications of liftoff, or
 we have one hardware indication and two or more sensors detected liftoff using elevated acceleration, or
 we have no hardware indication and two or more sensors detect liftoff using definitive acceleration.
 -->
 <IgnitionLogic default="false">
 <cond> Liftoff_Hardware_Only.Result is true </cond> <or/>
 <vote zero="false" one="false" two="and" tie="true"> Liftoff_Sensors_And_Hardware </vote> <or/>
 <vote zero="false" one="false" two="and" tie="true"> Liftoff_Sensors_Only </vote>
 </IgnitionLogic>
 <!--
 Detect Stage 1 burnout after the minimum burn time has elapsed and two or more sensors
 detect an acceleration drop below the level acceptable for Stage 1 burnout.
 -->
 <BurnoutLogic default="false">
 <cond> Stage_1.TimeSinceIgnition > Minimum_Burn_Time_Stage_1 </cond> <and/>
 <vote zero="false" one="false" two="and" tie="true"> Stage_Burnout </vote>
 </BurnoutLogic>
 </Stage>
 
 
 
 </Stages>
</FlightEvents>

Capacity – Agility – Responsiveness – Resilience

MISSION RULES DEVELOPMENT

Gate Rules

11

Capacity – Agility – Responsiveness – Resilience

MISSION RULES DEVELOPMENT

Gate Example: Headon Exit Gate

12

<MissionRules>
 <GateRule id="Headon_Exit_Gate">
 <Subset> GPS_A GPS_B HYBRID_A HYBRID_B INS_A INS_B </Subset>
 <Output>
 <InvalidWhen default="true">
 <cond> haveLiftOff is false </cond> <or/>
 <cond> isGoodSensorData is false </cond> <or/>
 <cond> impactComputed is false </cond> <or/>
 <cond> Perigee < Maximum_Perigee_Headon </cond>
 </InvalidWhen>
 <Result default="false">
 <cond> Headon_Exit_Gate.isCrossed is true </cond>
 </Result>
 </Output>
 <GateCoordinates>
 <PointA> <Lat> 10.547600 </Lat> <Lon> -37.226000 </Lon> </PointA>
 <PointB> <Lat> 21.731800 </Lat> <Lon> -30.005600 </Lon> </PointB>
 </GateCoordinates>
 <TripMode> CrossLeftToRight </TripMode>
 <CrossPersist> 1 </CrossPersist>
 <RefCoordinates> Impact </RefCoordinates>
 </GateRule>
 
 
 
</MissionRules>

Capacity – Agility – Responsiveness – Resilience

MISSION RULES DEVELOPMENT

Map Boundary Rules: Destruct Lines

13

Capacity – Agility – Responsiveness – Resilience

MISSION RULES DEVELOPMENT

Map Boundary Sample: Destruct Lines

14

<Boundaries>
 <!-- Note: Boundary coordinates are positive East geodetic in decimal degrees. -->
 <Static_Boundary id ="Destruct_Lines" orientation="Clockwise" outerLat="39.0" outerLon="-77.0">
 <Vertices>
 <Vertex> <Lat> 7.007661 </Lat> <Lon> -32.692886 </Lon> </Vertex>
 <Vertex> <Lat> 11.236036 </Lat> <Lon> -38.107641 </Lon> </Vertex>
 <Vertex> <Lat> 16.894337 </Lat> <Lon> -43.349243 </Lon> </Vertex>
 <Vertex> <Lat> 20.767154 </Lat> <Lon> -48.056303 </Lon> </Vertex>
 <Vertex> <Lat> 24.252088 </Lat> <Lon> -52.638379 </Lon> </Vertex>
 <Vertex> <Lat> 26.412423 </Lat> <Lon> -55.826182 </Lon> </Vertex>
 <Vertex> <Lat> 29.380887 </Lat> <Lon> -60.954146 </Lon> </Vertex>
 
 
 
 <Vertex> <Lat> 36.413871 </Lat> <Lon> -61.759196 </Lon> </Vertex>
 <Vertex> <Lat> 35.286065 </Lat> <Lon> -58.470732 </Lon> </Vertex>
 <Vertex> <Lat> 34.002417 </Lat> <Lon> -55.184778 </Lon> </Vertex>
 <Vertex> <Lat> 31.709156 </Lat> <Lon> -50.122673 </Lon> </Vertex>
 <Vertex> <Lat> 28.738015 </Lat> <Lon> -43.494405 </Lon> </Vertex>
 <Vertex> <Lat> 21.433278 </Lat> <Lon> -29.443836 </Lon> </Vertex>
 <Vertex> <Lat> 19.204944 </Lat> <Lon> -24.834595 </Lon> </Vertex>
 <Vertex> <Lat> 7.007661 </Lat> <Lon> -32.692886 </Lon> </Vertex>
 </Vertices>
 </Static_Boundary>
 
 
 
</Boundaries>

Capacity – Agility – Responsiveness – Resilience

MISSION RULES DEVELOPMENT

Map Boundary Sample: Destruct Lines

15

<MissionRules>
 <MapBoundaryRule id="Destruct_Line_Debris_Rule">
 <Subset> GPS_A GPS_B HYBRID_A HYBRID_B INS_A INS_B </Subset>
 <Output>
 <InvalidWhen default="true">
 <cond> haveLiftOff is false </cond> <or/>
 <cond> isGoodSensorData is false </cond> <or/>
 <cond> impactComputed is false </cond>
 <!-- As noted above, the following line is applicable to Wallops Flight Facility. -->
 <or/> <cond> Launch_Plane.impact.posDownRange < Minimum_Destruct_Line_Distance </cond>
 </InvalidWhen>
 <Result default="false">
 <cond> Destruct_Line_Debris_Rule.isInside is false </cond>
 </Result>
 </Output>
 <RefBoundary> Destruct_Lines </RefBoundary>
 <RefCoordinates> Impact </RefCoordinates>
 </MapBoundaryRule>
 
 
 
</MissionRules>

Capacity – Agility – Responsiveness – Resilience

MISSION RULES DEVELOPMENT

Stair Step Command

16

Capacity – Agility – Responsiveness – Resilience

MISSION RULES DEVELOPMENT

Voting (Boolean Case)

17

• A quorum is defined as 3 non-abstaining votes (In
parenthesis is what is used on slide 13 sample file):
• Zero is 0 non-abstaining votes (No decision can be

made – result is false)
• One is 1 non-abstaining vote (ballot_result is used –

the 1 non-abstaining vote is used as result)
• Two is 2 non-abstaining votes (“or” logic is used – if

either say true, then result is true)
• Tie is a quorum with equal amounts of non-

abstaining votes for each outcome (true is result –
true wins in a tie)

Capacity – Agility – Responsiveness – Resilience

MISSION RULES DEVELOPMENT

Commands Sample: Activate FTS using:
• Stair step command
• Voting

18

<Commands>
 <!--
 Activate the Flight Termination System
 This is a stair step command (tri-state: OFF ==> READY ==> ACTIVATE, with return, ACTIVATE ==> READY ==> OFF).
 -->
 <Command id="Activate_Flight_Termination_System">
 <TimeToReady> 0.3 </TimeToReady> <!-- In seconds. -->
 <TimeToActivate> 0.5 </TimeToActivate> <!-- In seconds. -->
 <TimeCap> 0.7 </TimeCap> <!-- In seconds. -->
 <TimeSlop> 0.0001 </TimeSlop> <!-- In seconds. -->
 <CommandWhen default="false">
 <vote zero="false" one="ballot-result" two="or" tie="true"> Straight_Up_Violation </vote> <or/>
 <vote zero="false" one="ballot-result" two="or" tie="true"> Explosive_Impact_Rule </vote> <or/>
 <vote zero="false" one="ballot-result" two="or" tie="true"> Chevron_Rule </vote> <or/>
 <vote zero="false" one="ballot-result" two="or" tie="true"> Azimuth_Check_Rule </vote> <or/>
 <vote zero="false" one="ballot-result" two="or" tie="true"> Destruct_Line_Debris_Rule </vote> <or/>
 <cond>
 <cond> Pre_Stage_4_Terminate_Rule.Invalid is false </cond> <and/>
 <cond> Pre_Stage_4_Terminate_Rule.Result is true </cond>
 </cond>
 </CommandWhen>
 </Command>
 
 
 
</Commands>

Capacity – Agility – Responsiveness – Resilience

MISSION RULES DEVELOPMENT

19

Cyclic Stream
id = 30

Cyclic Stream
id = 5

Cyclic Stream
id = 2

Cyclic Stream
id = 90

CASS “Update”
Processing

Stream Memory
Containing Data
from Stream id 5

Stream Memory
Containing Data

from Stream id 30

Stream Memory
Containing Data

from Stream id 90
Stream Memory
Containing Data
from Stream id 2

Stream Memory
Containing Data
from Stream id 5

Stream Memory
Containing Data

from Stream id 30

TM Receiving
Site

CASS sends a different “cyclic”
stream out each processing

cycle. Ordering is taken from
stream definition ordering in

Mission Rules. Ordering is not
based on stream “id”.

Cyclic Streams

Streams allow the user to obtain information from the CASS
flight software within the AFTU during testing and flight.

Capacity – Agility – Responsiveness – Resilience

MISSION RULES DEVELOPMENT

20

Cyclic Stream
id = 30

Cyclic Stream
id = 5

Cyclic Stream
id = 2

Cyclic Stream
id = 90

CASS “Update”
Processing

Stream Memory
Containing Data

from Stream id 30

Stream Memory
Containing Data

from Stage1.isIgnited
Event Stream

Stream Memory
Containing Data

from Stream id 90
Stream Memory
Containing Data
from Stream id 2

Stream Memory
Containing Data
from Stream id 5

Stream Memory
Containing Data

from Stream id 30

TM Receiving
Site

When triggered, event streams
override the cyclic streams.

Normal cycle stream processing
continues with the next cycle.

Event Stream
Stage1.isIgnited

Event Streams

Streams allow the user to obtain information from the CASS
flight software within the AFTU during testing and flight.

Capacity – Agility – Responsiveness – Resilience

MISSION RULES DEVELOPMENT

• CASS Utility MDL_Tool
– Reads and validates XML file against rsoML schema definition.
– Performs data validation and data consistency checks.
– Performs data dependency and data reference checks.
– Provides diagnostic messages.
– Generates MDL if no errors were detected during analysis.
– Generates Stream Map file if any Streams are defined in XML file.

21

Capacity – Agility – Responsiveness – Resilience

TESTING AND SIMULATION

• CASS Data Driven Simulation (CASS_DDSim) Tool
– A CASS Flight Software wrapper for the PC.
– Passes simulated sensor data to CASS Flight Software

and captures output for analysis.

22

Capacity – Agility – Responsiveness – Resilience

TESTING AND SIMULATION

• CHERRY Tool
– Executes under MATLAB without any special toolboxes.
– Utilizes latest CASS_DDSim and MDL_Tool, or can be

configured to use older versions of CASS_DDSim or
MDL_Tool.

– Converts many trajectory file formats into sensor input
messages needed by CASS_DDSim.

– Executes selected version of MDL_Tool to generate an
MDL from an input XML Mission Rules file, then
executes the selected version of CASS_DDSim.

– Monitors CASS_DDSim results (static Mission Rule data
and formatted telemetry data) and translates results to
Earth grid maps.

23

Capacity – Agility – Responsiveness – Resilience

TESTING AND SIMULATION

24

MISSION PREPARATION

Capacity – Agility – Responsiveness – Resilience

TESTING AND SIMULATION

Typical CHERRY Tool Configuration

25

Third Party Tool
Configuration File Mission Rules

(XML File) Simulation Data File

CASS_DDSim

Stream Data

Database Names
(optional)

Mission Rule Data
(optional)

Formatted TMMessages

Capacity – Agility – Responsiveness – Resilience

TESTING AND SIMULATION

Nominal Mission Simulation
CHERRY Tool Screen Capture

26

Capacity – Agility – Responsiveness – Resilience

TESTING AND SIMULATION

Nominal Mission Simulation
CHERRY Tool Screen Capture
with 3D Earth Grid

27

Capacity – Agility – Responsiveness – Resilience

TESTING AND SIMULATION

Nominal Mission Simulation
CHERRY Tool Screen Capture

with 2D Earth Grid and
Forced Malfunction Turn

28

Capacity – Agility – Responsiveness – Resilience

TESTING AND SIMULATION

Nominal Mission Simulation
CHERRY Tool Screen Capture

with 2D Earth Grid and
Forced Loss of Sensor Data

29

Capacity – Agility – Responsiveness – Resilience

AFTS UNIT

30

Capacity – Agility – Responsiveness – Resilience

GETTING THE SOFTWARE

31

Request a copy of the CASS Software Usage Agreement (SUA) form or the
CHERRY SUA. The form should be signed by a person that can legally obligate

the company (i.e., recipient). Once the form is signed, send a PDF version of the
scanned, signed, document to:

Primary POC Alternate POC
Jeffrey D. Cherry
SLD 30/SEAE
Safety Engineer
805-606-5784
jeffrey.cherry.1@spaceforce.mil

Richard “Cass” Russett
SLD 30/SEAE
Safety Engineer
805-605-1724
richard.russett@spaceforce.mil

The CASS can be downloaded once received via a secure download site as a
compressed archive containing source code for the CASS Flight Software,

CASS Utilities, scripts, demonstration software, and documentation. CHERRY
tool can be downloaded once received via a secure download site as a

compressed archive containing the CHERRY tool with examples.

	using the �Core Autonomous Safety Software (CASS)�and the�CASS Hazard Evaluation Readiness Review Analysis �(CHERRY) Tool
	AFTS Overview
	Topics
	CASS
	CASS
	Mission Rules Development
	Mission Rules Development
	Mission Rules Development
	Mission Rules Development
	Mission Rules Development
	Mission Rules Development
	Mission Rules Development
	Mission Rules Development
	Mission Rules Development
	Mission Rules Development
	Mission Rules Development
	Mission Rules Development
	Mission Rules Development
	Mission Rules Development
	Mission Rules Development
	Mission Rules Development
	Testing and Simulation
	Testing and Simulation
	Testing and Simulation
	Testing and Simulation
	Testing and Simulation
	Testing and Simulation
	Testing and Simulation
	Testing and Simulation
	AFTS Unit
	Getting the Software

