Autonomous Flight Termination Systems

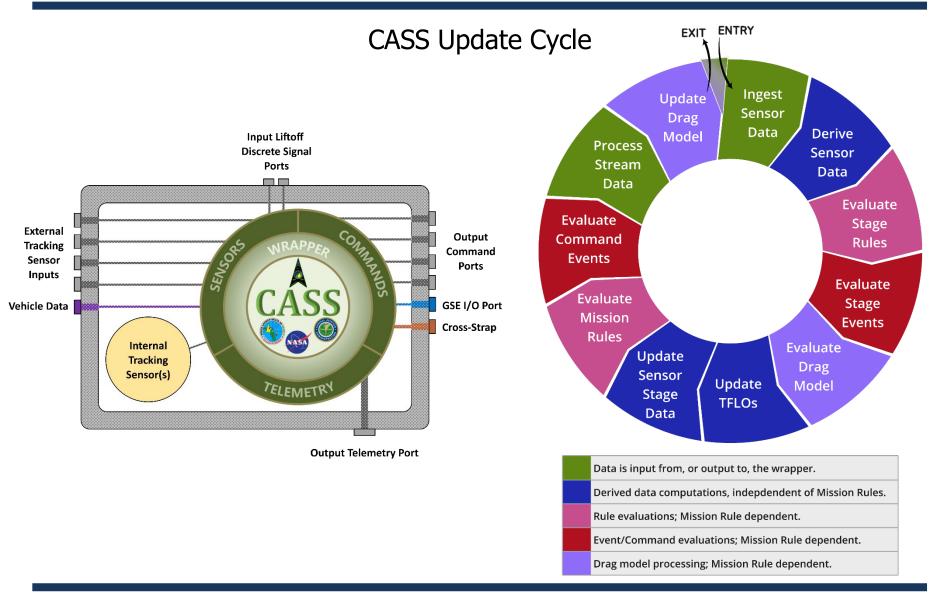
USING THE <u>CORE AUTONOMOUS SAFETY SOFTWARE (CASS)</u> AND THE <u>CASS HAZARD EVALUATION READINESS REVIEW ANALYSIS</u> (CHERRY) TOOL

An Autonomous Flight Termination System (AFTS) is an on-board unit that monitors the flight vehicle by comparing sensor inputs to pre-defined Range Safety criteria. If the flight vehicle violates safety criteria, the AFTS issues a flight termination command.

AFTS Advantages

- Faster response time allows larger safe fly zones.
- Reduced launch costs due to less dependence on Range infrastructure and instrumentation.
- Increased launch availability.
- 24/7 launch with no Range support.
- Launch in remote locations off Range.

- Core Autonomous Safety Software (CASS)
- Mission Rules Development
- Testing and Simulation (CHERRY Tool)
- AFTS Unit
- Getting the Software



CASS

- CASS is composed of:
 - Flight Software
 - Utilities Software
 - Documentation
- CASS is GFE
 - Core software for an AFTS.
 - Used like any third-party software product approved for use in a Safety Critical system.
- CASS Requires
 - Safety criteria; Mission Data Load (MDL).
 - Sensor data; 2 or more adequate and independent sources of vehicle performance data at a regular, periodic rate.
 - Wrapper software; bridges gap between hardware sensors and CASS, and between CASS and flight termination system.

CASS

- Mission Rules defined in XML text file
 - Format defined by Range Safety Operations Markup Language (rsoML) schema definition.
 - Mission Rules file is composed of 11 Major sections.

Section	Description
Mission	Contains descriptive data for mission.
UserDefines	User defined variables and named constants.
Settings	Global parameter settings and constants.
Commands	Commands to Activate or deactivate the FTS.
Sensors	Sensor definitions and parameters.
AtmosphericRegions	Define region to include atmospheric computations.
FlightEvents	Important flight events like ignition, liftoff, and staging.
ReferenceFrames	User defined moving reference frames.
Boundaries	User defined boundary definitions.
Tables	User defined lookup tables.
MissionRules	Rules for Safing the flight and Terminating the flight.

Sensors Sample

<sensors></sensors>			
<sensor id="GPS A"></sensor>			
<filter></filter>			
<limit filter=""></limit>			
<minimum time=""></minimum>	@GPST 2141 21600	0.0	
<minimum position=""></minimum>	<pre><minimum position=""> DistanceFromCenterMassEarthToDeadSea</minimum></pre>		
<maximum position=""></maximum>	DistanceFromCenterMassEa	arthToLowEarthOrbit	
<maximum_velocity></maximum_velocity>	<pre><maximum velocity=""> VelocityToGoOrbital</maximum></pre>		
			_
<pre><liftoffthreshvel> Veloci</liftoffthreshvel></pre>	ty Threshold GPS <td>ffThreshVel> <!-- I</td--><td>n meters/second></td></td>	ffThreshVel> I</td <td>n meters/second></td>	n meters/second>
<pre><veldotparam> Acceleratio</veldotparam></pre>	on_Filter_Coefficient <td>elDotParam> <!-- Un</td--><td>itless></td></td>	elDotParam> Un</td <td>itless></td>	itless>
< <u>QualifyLogic</u> default="fa	alse">		
<pre><cond> GPS_A.isValidNavData is true</cond></pre>		<and></and>	
<pre><cond> GPS A.isValidGPSData is true</cond></pre>		<and></and>	
<cond> GPS_A.svCount &</cond>	gt; Minimum_Satellite_Cou	<pre>int <and></and></pre>	
<pre><cond> GPS_A.PDOP <</cond></pre>	Maximum_PDOP	<and></and>	
<pre><cond> GPS_A.Time <</cond></pre>	System_Time		
	_		
•			
•			
•			

FlightEvents Rules Sample: Stage Ignition

```
<FlightEvents>
  <Rules>
      <GenericRule id="Stage Ignition">
         <Compute>
            <Assign id="Ignition Acceleration Threshold"> Ignition Acceleration Threshold Table(Stage Number) </Assign>
         </Compute>
         <Subset> GPS A GPS B HYBRID A HYBRID B INS A INS B
                                                                </Subset>
         <Output>
            <InvalidWhen default="true">
                                                                      </cond> <or/>
               <cond> isGoodSensorData is false
               <cond> haveLiftOff is false
                                                                      </cond>
            </InvalidWhen>
            <Result default="false">
               <cond> accelTotal &gt; Ignition Acceleration Threshold </cond>
            </Result>
         </Output>
      </GenericRule>
  </Rules>
</FlightEvents>
```


FlightEvents Rules Sample: Liftoff

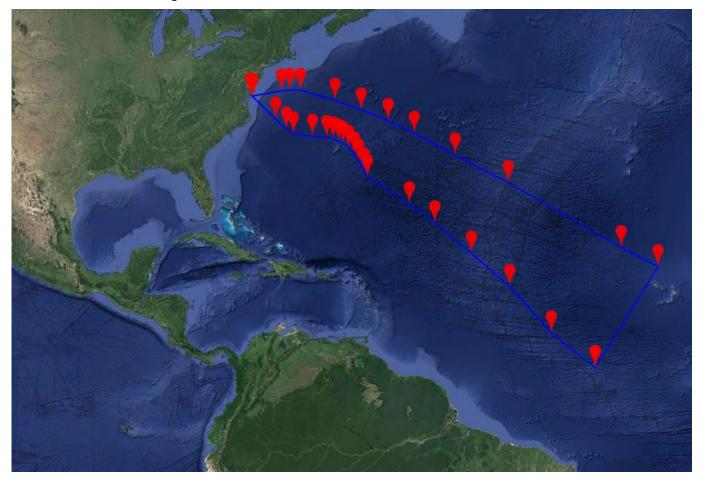
```
<FlightEvents>
   <Rules>
      <GenericRule id="Liftoff Hardware Only">
         <Output>
            <InvalidWhen default="true">
               <cond> haveLiftOff is true
                                                            </cond> <or/>
                                                            </cond> <or/>
               <cond> GPS A.isGoodSensorData is true
               <cond> GPS B.isGoodSensorData is true
                                                            </cond> <or/>
               <cond> HYBRID A.isGoodSensorData is true
                                                            </cond> <or/>
               <cond> HYBRID B.isGoodSensorData is true
                                                            </cond> <or/>
                                                            </cond> <or/>
               <cond> INS A.isGoodSensorData is true
               <cond> INS B.isGoodSensorData is true
                                                            </cond>
            </InvalidWhen>
            <Result default="false">
                                                           </cond> <and/>
               <cond> haveLiftOffA is true
                                                           </cond>
               <cond> haveLiftOffB is true
            </Result>
         </Output>
      </GenericRule>
   </Rules>
</FlightEvents>
```


FlightEvents Stages Sample: Stage

tages>	
<stage id="Stage_1"></stage>	
</th <th></th>	
Detect Stage 1 ignition (liftoff) if we have two hardware indications of liftoff,	or
we have one hardware indication and two or more sensors detected liftoff using el	evated acceleration
we have no hardware indication and two or more sensors detect liftoff using defin	itive acceleration
>	
<ignitionlogic default="false"></ignitionlogic>	
<pre><cond> Liftoff_Hardware_Only.Result is true</cond></pre>	<or></or>
<pre><vote one="false" tie="true" two="and" zero="false"> Liftoff_Sensors_And_Hardware</vote></pre>	<or></or>
<pre><vote one="false" tie="true" two="and" zero="false"> Liftoff_Sensors_Only</vote></pre>	
</td <td></td>	
Detect Stage 1 burnout after the minimum burn time has elapsed and two or more se	nsors
detect an acceleration drop below the level acceptable for Stage 1 burnout.	
>	
<burnoutlogic default="false"></burnoutlogic>	
<pre><cond> Stage_1.TimeSinceIgnition > Minimum_Burn_Time_Stage_1</cond></pre>	<and></and>
<pre><vote one="false" tie="true" two="and" zero="false"> Stage_Burnout</vote></pre>	
•	
•	
•	

MISSION RULES DEVELOPMENT

Gate Rules



Gate Example: Headon Exit Gate

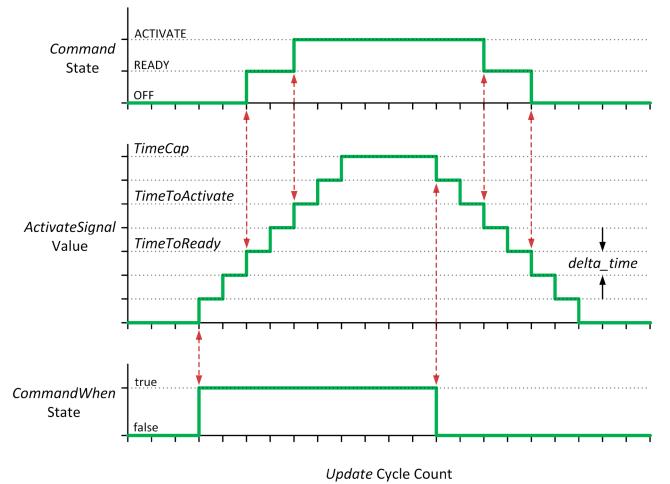
```
<MissionRules>
   <GateRule id="Headon Exit Gate">
      <Subset> GPS A GPS B HYBRID A HYBRID B INS A INS B </Subset>
      <Output>
         <InvalidWhen default="true">
            <cond> haveLiftOff is false
                                                        </cond> <or/>
                                                       </cond> <or/>
            <cond> isGoodSensorData is false
            <cond> impactComputed is false
                                                        </cond> <or/>
            <cond> Perigee &lt; Maximum Perigee Headon </cond>
         </InvalidWhen>
         <<u>Result</u> default="false">
            <cond> Headon Exit Gate.isCrossed is true </cond>
         </Result>
      </Output>
      <GateCoordinates>
         <PointA> <Lat> 10.547600 </Lat> <Lon> -37.226000 </Lon> </PointA>
         <PointB> <Lat> 21.731800 </Lat> <Lon> -30.005600 </Lon> </PointB>
      </GateCoordinates>
      <TripMode> CrossLeftToRight </TripMode>
      <CrossPersist> 1 </CrossPersist>
      <RefCoordinates> Impact </RefCoordinates>
   </GateRule>
</MissionRules>
```


Map Boundary Rules: Destruct Lines

Map Boundary Sample: Destruct Lines

<Boundaries>

```
<!-- Note: Boundary coordinates are positive East geodetic in decimal degrees. -->
  <Static Boundary id ="Destruct Lines" orientation="Clockwise" outerLat="39.0" outerLon="-77.0">
     <Vertices>
        <Vertex> <Lat> 7.007661 </Lat> <Lon> -32.692886 </Lon> </Vertex>
        <Vertex> <Lat> 11.236036 </Lat> <Lon> -38.107641 </Lon> </Vertex>
        <Vertex> <Lat> 16.894337 </Lat> <Lon> -43.349243 </Lon> </Vertex>
        <Vertex> <Lat> 20.767154 </Lat> <Lon> -48.056303 </Lon> </Vertex>
        <Vertex> <Lat> 24.252088 </Lat> <Lon> -52.638379 </Lon> </Vertex>
        <Vertex> <Lat> 26.412423 </Lat> <Lon> -55.826182 </Lon> </Vertex>
        <Vertex> <Lat> 29.380887 </Lat> <Lon> -60.954146 </Lon> </Vertex>
        <Vertex> <Lat> 36.413871 </Lat> <Lon> -61.759196 </Lon> </Vertex>
        <Vertex> <Lat> 35.286065 </Lat> <Lon> -58.470732 </Lon> </Vertex>
        <Vertex> <Lat> 34.002417 </Lat> <Lon> -55.184778 </Lon> </Vertex>
        <Vertex> <Lat> 31.709156 </Lat> <Lon> -50.122673 </Lon> </Vertex>
        <Vertex> <Lat> 28.738015 </Lat> <Lon> -43.494405 </Lon> </Vertex>
        <Vertex> <Lat> 21.433278 </Lat> <Lon> -29.443836 </Lon> </Vertex>
        <Vertex> <Lat> 19.204944 </Lat> <Lon> -24.834595 </Lon> </Vertex>
        <Vertex> <Lat> 7.007661 </Lat> <Lon> -32.692886 </Lon> </Vertex>
     </Vertices>
  </Static Boundary>
</Boundaries>
```



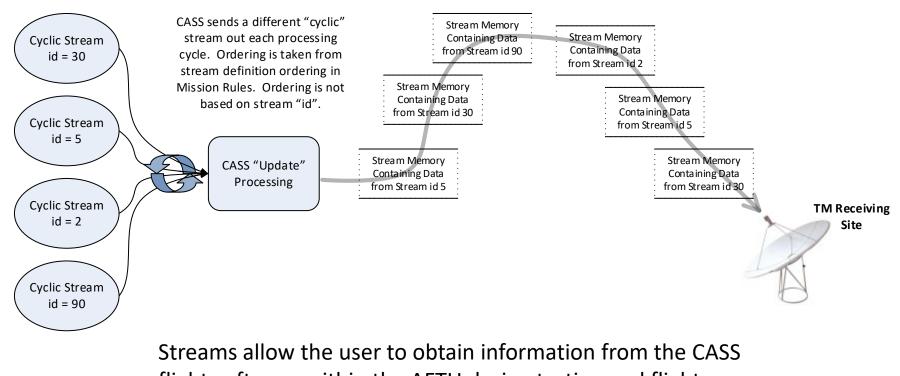
Map Boundary Sample: Destruct Lines

```
<MissionRules>
   <MapBoundaryRule id="Destruct Line Debris Rule">
     <Subset> GPS A GPS B HYBRID A HYBRID B INS A INS B </Subset>
     <Output>
         <InvalidWhen default="true">
             <cond> haveLiftOff is false
                                                     </cond> <or/>
             <cond> isGoodSensorData is false
                                                     </cond> <or/>
             <cond> impactComputed is false
                                                     </cond>
             <!-- As noted above, the following line is applicable to Wallops Flight Facility. -->
             <or/> <cond> Launch Plane.impact.posDownRange &lt; Minimum Destruct Line Distance </cond>
         </InvalidWhen>
         <Result default="false">
            <cond> Destruct Line Debris Rule.isInside is false </cond>
         </Result>
    </Output>
    <RefBoundary> Destruct Lines </RefBoundary>
     <RefCoordinates> Impact </RefCoordinates>
   </MapBoundaryRule>
</MissionRules>
```


Stair Step Command

Voting (Boolean Case)

- A quorum is defined as 3 non-abstaining votes (In parenthesis is what is used on slide 13 sample file):
 - Zero is 0 non-abstaining votes (No decision can be made – result is false)
 - One is 1 non-abstaining vote (ballot_result is used the 1 non-abstaining vote is used as result)
 - Two is 2 non-abstaining votes ("or" logic is used if either say true, then result is true)
 - Tie is a quorum with equal amounts of nonabstaining votes for each outcome (true is result – true wins in a tie)

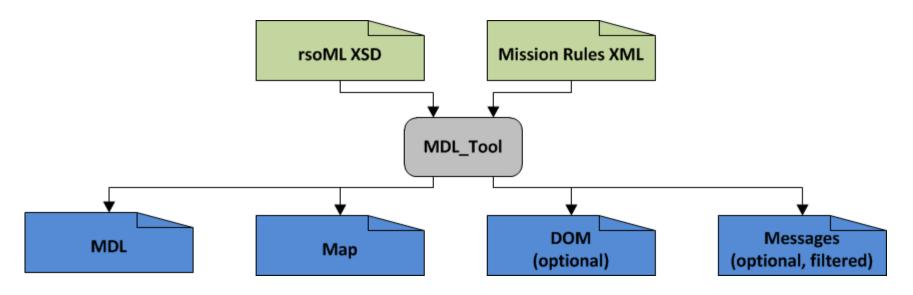

Commands Sample: Activate FTS using:

- Stair step command
- Voting

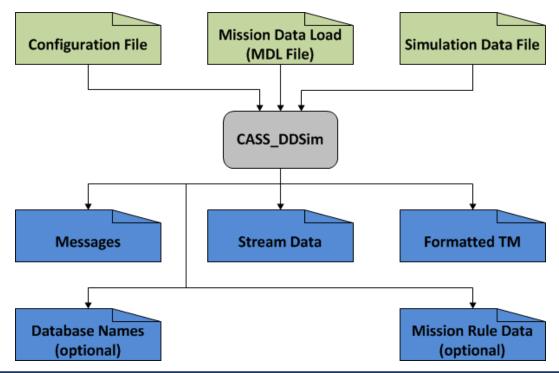
```
<Commands>
  <1--
     Activate the Flight Termination System
     This is a stair step command (tri-state: OFF ==> READY ==> ACTIVATE, with return, ACTIVATE ==> READY ==> OFF).
   -->
   <Command id="Activate Flight Termination System">
     <TimeToReadv>
                      0.3
                             </TimeToReadv>
                                               <!-- In seconds. -->
                             </TimeToActivate> <!-- In seconds. -->
     <TimeToActivate> 0.5
     <TimeCap>
                      0.7
                             </TimeCap>
                                              <!-- In seconds. -->
     <TimeSlop>
                      0.0001 </TimeSlop>
                                               <!-- In seconds. -->
      <CommandWhen default="false">
                                                                                                </vote> <or/>
         <vote zero="false" one="ballot-result" two="or" tie="true"> Straight Up Violation
                                                                                                </vote> <or/>
         <vote zero="false" one="ballot-result" two="or" tie="true"> Explosive Impact Rule
         <vote zero="false" one="ballot-result" two="or" tie="true"> Chevron Rule
                                                                                                </vote> <or/>
         <vote zero="false" one="ballot-result" two="or" tie="true"> Azimuth Check Rule
                                                                                                </vote> <or/>
         <vote zero="false" one="ballot-result" two="or" tie="true"> Destruct Line Debris Rule </vote> <or/>
         <cond>
            <cond> Pre Stage 4 Terminate Rule.Invalid is false </cond> <and/>
           <cond> Pre_Stage_4_Terminate_Rule.Result is true
                                                               </cond>
        </cond>
     </CommandWhen>
  </Command>
</Commands>
```


Cyclic Streams

flight software within the AFTU during testing and flight.

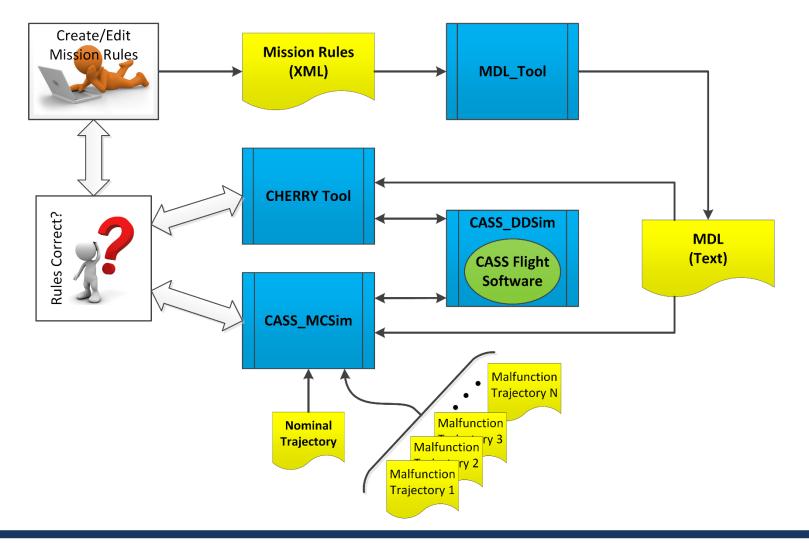

Event Streams

Streams allow the user to obtain information from the CASS flight software within the AFTU during testing and flight.

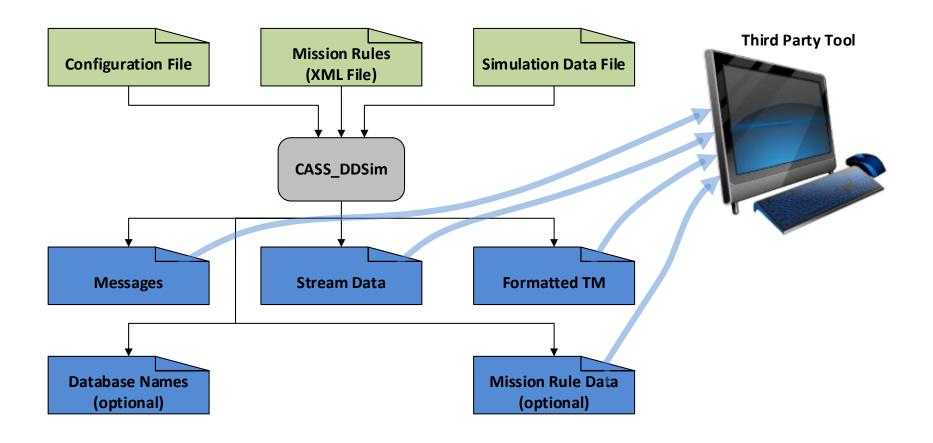


- CASS Utility MDL_Tool
 - Reads and validates XML file against rsoML schema definition.
 - Performs data validation and data consistency checks.
 - Performs data dependency and data reference checks.
 - Provides diagnostic messages.
 - Generates MDL if no errors were detected during analysis.
 - Generates Stream Map file if any Streams are defined in XML file.

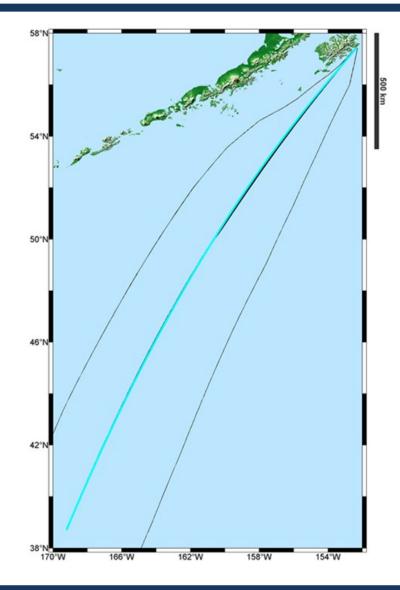
- CASS Data Driven Simulation (CASS_DDSim) Tool
 - A CASS Flight Software wrapper for the PC.
 - Passes simulated sensor data to CASS Flight Software and captures output for analysis.



- CHERRY Tool
 - Executes under MATLAB without any special toolboxes.
 - Utilizes latest CASS_DDSim and MDL_Tool, or can be configured to use older versions of CASS_DDSim or MDL_Tool.
 - Converts many trajectory file formats into sensor input messages needed by CASS_DDSim.
 - Executes selected version of MDL_Tool to generate an MDL from an input XML Mission Rules file, then executes the selected version of CASS_DDSim.
 - Monitors CASS_DDSim results (static Mission Rule data and formatted telemetry data) and translates results to Earth grid maps.

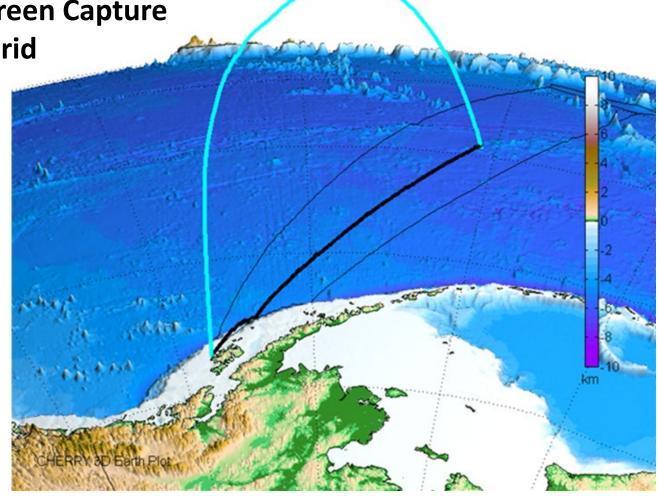

TESTING AND SIMULATION

MISSION PREPARATION

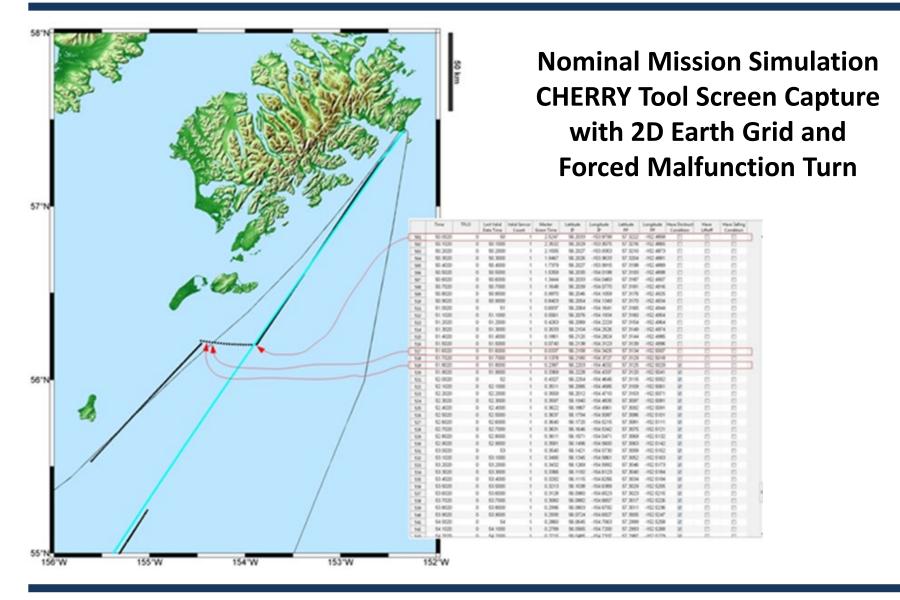


Typical CHERRY Tool Configuration

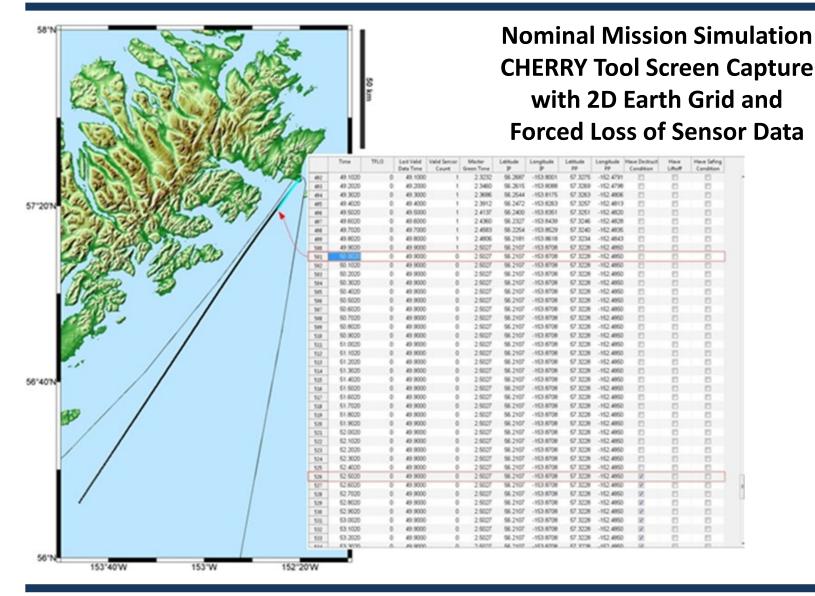
TESTING AND SIMULATION



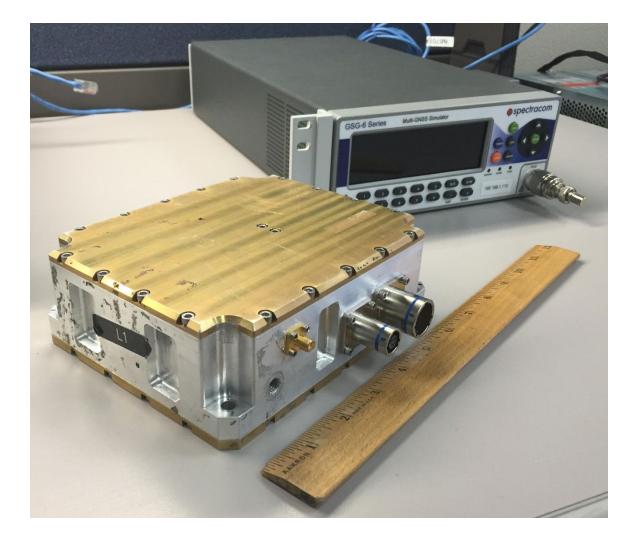
Nominal Mission Simulation CHERRY Tool Screen Capture



Nominal Mission Simulation CHERRY Tool Screen Capture with 3D Earth Grid



TESTING AND SIMULATION



TESTING AND SIMULATION

Request a copy of the CASS Software Usage Agreement (SUA) form or the CHERRY SUA. The form should be signed by a person that can legally obligate the company (i.e., recipient). Once the form is signed, send a PDF version of the scanned, signed, document to:

Primary POC	Alternate POC
Jeffrey D. Cherry	Richard "Cass" Russett
SLD 30/SEAE	SLD 30/SEAE
Safety Engineer	Safety Engineer
805-606-5784	805-605-1724
jeffrey.cherry.1@spaceforce.mil	richard.russett@spaceforce.mil

The CASS can be downloaded once received via a secure download site as a compressed archive containing source code for the CASS Flight Software, CASS Utilities, scripts, demonstration software, and documentation. CHERRY tool can be downloaded once received via a secure download site as a compressed archive containing the CHERRY tool with examples.